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Surface magnetic phase diagram for a semi-infinite ferromagnet

A. P. Popov
Department of Molecular Physics, Moscow State Engineering Physics Institute, Kashirskoe shosse, 31, 115407 Moscow, Ru

D. P. Pappas
National Institute of Standards and Technology, Boulder, Colorado 80305

~Received 4 May 2001; published 12 October 2001!

The phase diagram for the orientation of the surface region is calculated in the parameter space defined by
the surface and bulk anisotropy in semi-infinite ferromagnetic systems and in thin ferromagnet films. Surface
magnetic canting always occurs when the magnitude of the surface anisotropy is comparable with the interlayer
exchange interaction. Increasing the thickness of a thin film supported on a hard magnetic substrate induces a
spin reorientation transition from the uniform, in-plane magnetic structure to a canted state. The inverse spin
reorientation transition from the canted state to the uniform, in-plane magnetic structure with thickness is
demonstrated for a thin film supported on a nonmagnetic substrate. A discrete layer-by-layer approach is
developed and compared to the continuum approach. We consider the 1.5 atomic-layer system of Fe on Gd and
find that it is a good physical realization of the model.
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INTRODUCTION

Determining the equilibrium state of magnetic mome
at surfaces and interfaces is key to understanding the m
netic behavior of semi-infinite systems. In particular, s
faces and interfaces can exhibit strong anisotropy,KS, due to
the reduced symmetry. It has been shown thatKS can favor
either perpendicular or in-plane magnetization alignme1

This term competes with magnetocrystalline and dipole
ergy of the bulk system,KB , which combined, can agai
favor either direction of bulk magnetization alignment. Co
sideration of these effects leads to the possibility tha
domain-wall-like structure can exist in the surface regio2

This would be manifested in a surface magnetic cant
~SMC! with a gradual transition to the equilibrium magne
zation in the bulk.

At present, it is generally believed that SMC takes pla
due to the difference between the surface and bulk ani
ropy, characterized by the anisotropy constantsKS andKB ,
respectively.2,3 Leaving aside the problem of the origin o
surface and bulk anisotropy, we find that the region in
phase diagram in coordinates (KS ,KB) that encompasse
SMC has, to date, not been determined.4–6 The main goal of
this article is to fill this gap in magnetic surface science.

We consider this problem in the framework of the sim
plest approach: a Heisenberg model with quasiclassical
tor moments and an isotropic exchange interaction. In
model, the layer indexn51 corresponds to the top surfac
atomic layer, where a second-order anisotropy is assig
with anisotropy constantKS . All of the inner layers (n
52,3, . . . ,N) are considered to be bulklike, with secon
order anisotropy characterized by constantKB , which is
independent of the layer indexn. In addition we include
an interlayer ferromagnetic exchangeJn,n11[J.0. Within
this approach, the problem is reduced to the considera
of a one-dimensional chain, and thus the energyE may be
written as
0163-1829/2001/64~18!/184401~11!/$20.00 64 1844
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cos~un2un11!1KS sin2 u11KB(
n52

N

sin2 un ,

~1!

whereun is the angle between thenth layer vector moment
and the surface plane as shown in Fig. 1. Below we cons
the case of a semi-infinite crystal (N→`) in Secs. I–III, V,
and VI and also thin films with a finite number of layers,N,
in Sec. IV.

We demonstrate that the onset of SMC follows the cri
rion for instability of a uniform magnetic structure. This
similar to the approach used in Ref. 7. Within this model
express this criterion in terms of the model parameters
closed form. Basing on this result we build a phase diagr
in coordinates of reduced-anisotropy constants

kS[
2KS

J
, kB[

2KB

J
,

which show the regions corresponding to SMC. We prop
its physical treatment for the cases wherekS,0, kB.0 and
kS.0, kB,0 in Sec. I and Sec. II, respectively. Of particul
interest is the region where the surface is always canted,

FIG. 1. Discrete layer model used for the semi-infinite ferr
magnet exhibiting a bulk in-plane anisotropy and a surface perp
dicular anisotropy. Surface magnetic canting is shown.
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where SMC takes place regardless of how large the ma
tude of reduced-bulk-anisotropy constantkB is. This case is
discussed in Sec. II.

In Sec. III we derive the evolution of the borders in th
(kS ,kB) phase diagram with an external magnetic fieldh. We
show that in the casekS,0,kB.0 accounting for an in-plane
magnetic field leads to a finite interval inkS where the ap-
pearance of SMC is suppressed. Thus, in this case the
some threshold magnitude ofkS for the appearance of SMC
Similar results are obtained for the casekS.0,kB,0.

In Sec. IV this method is then applied to thin magne
films, and it is shown that the finite thickness of a film su
ported on a hard magnetic substrate gives rise to a decr
in the SMC region in the (kS ,kB) phase diagram. In this
case, for a suitable set of magnitudes of model parame
the spin reorientation transition~SRT! from an in-plane uni-
form magnetic structure to the SMC structure takes place
contrast, the finite thickness of a film supported on a n
magnetic substrate gives rise to a decrease in the SMC re
in the (kS ,kB) phase diagram. In this case, for a suitable
of magnitudes of model parameters, the SRT from a S
structure to the in-plane uniform magnetic structure ta
place.

In Sec. V we compare our results with the description
SMC obtained within the continuum approach.2,3 We show
that, from the viewpoint of the (kS ,kB) phase diagram, re
sults obtained within the continuum approach correspon
ours in only a narrow range of model-parameter magnitud
A method for improvement on the continuum approa
model is proposed.

We discuss the relevance of this model to real phys
systems. In particular, in Sec. VI we treat the case of
atomic-layer films of Fe on Gd that have been shown
demonstrate the SRT from the in-plane to SMC structure

I. PHASE DIAGRAM FOR SURFACE MAGNETIC
CANTING IN SEMI-INFINITE FERROMAGNET:

PERPENDICULAR SURFACE ANISOTROPY
AND IN-PLANE BULK ANISOTROPY

For a semi-infinite ferromagnet exhibiting a bulk in-pla
anisotropy, the appearance of SMC is marked by a sm
deviation of the first few layer vector moments from t
18440
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in-plane orientation. SMC takes place only when it becom
energetically favorable compared to the uniform in-pla
structure. Therefore, the evaluation for the criterion of SM
implies that each angleun in Eq. ~1! has to be varied away
from zero, and the resulting perturbation on the ene
evaluated. For the case of small deviations ofun , the expres-
sion for energy in Eq.~1! may be expanded to second ord
for eachun ,

E'E01u TAu, u5~u1 ,u2 ,...,uN!. ~2!

Here E0 is a part of the energy-independentun and A is a
square (N3N) three-diagonal symmetric matrix with rea
elements. The set ofN eigenvectors,an , of this matrix rep-
resents a full set of orthogonal vectors, i.e., they form a ba
in N-dimensional space. Therefore, it is possible to expa
the vectoru in eigenvectorsan ,

u5c1a11c2a21¯1cNaN . ~3!

Equation~2! may then be rewritten as

E5E01(
n

N

Lnucnu2. ~4!

HereLn is thenth eigenvalue of matrixA. In order to mini-
mize the energy defined by Eq.~4! one must vary the coef
ficients cn that determine the canting profile in accordan
with Eq. ~3!. Therefore, for a given set of magnitudes
model parameters,KS , KB , J, andN, the minimal energyE
corresponds to a certain magnetic structure in the sur
region. From Eq.~4! we find that for only positive signs o
each eigenvalueLn the energy is minimized when ever
ucnu250. This corresponds tou50, i.e., a uniform magnetic
structure with an in-plane orientation of each layer’s vec
moment. However, if even oneLn becomes negative, the
the conditionu50 does not correspond to an energy min
mum. In this case, a uniform magnetic structure with an
plane orientation of each layer vector moment is not
stable configuration. Hence, the criterion for SMC is that
minimal eigenvalue of the matrixA should be less than zero

In order to express this criterion, first one needs to fi
this minimal eigenvalueLmin , express it in terms of mode
parameters, and then solve the inequalityLmin,0. The equa-
tion for eigenvalues of the matrixA is expressed as
detuA2LI u5JN detI «l1k/2 2 1
2 0 0 0 0

2 1
2 «l 2 1

2 0 0

0 2 1
2 «l 2 1

2

0 0 2 1
2 0 0

«l 2 1
2 0

0 0 2 1
2 «l 2 1

2

0 0 0 0 2 1
2 «l

I 50. ~5!
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SURFACE MAGNETIC PHASE DIAGRAM FOR A SEMI- . . . PHYSICAL REVIEW B 64 184401
Here, «l511(KB /J)2l5«2l, l5L/J, k52112(KS
2KB)/J. The parameterk characterizes the surface pertu
bation that originates from both the absence of the ou
layer above the surface and the difference between the
face, KS , and bulk,KB , anisotropy constants. Because w
consider the case of a semi-infinite crystal (N→`) in this
section, we neglect the surface perturbation at the other
face of a film, i.e., in the bottom right corner of the matr
the parameterk is set to zero. Equation~5! can then be
written in the form

dN1
k

2
dN2150. ~6!

Here,dN is the determinant of an (N3N) matrix similar to
Eq. ~5! but with all diagonal elements equal to«l , i.e., k
50. For various values of«l , the determinantdN can have
various forms.7 Because the expression for«l contains the
reduced eigenvaluel5L/J, the form of Eq.~6! depends on
the interval over which the eigenvalue is searched for. T
means that while searching for eigenvalues we must cons
all possible cases.

Case~i! u«lu<1. In this case the reduced eigenvalues
long to a ‘‘band,’’ i.e.,

21<«2l<11,

or equivalently,

KB

J
[«21<l<«11[

KB

J
12. ~7a!

Since we consider the case where the bulk-anisotropy c
stant KB favors in-plane magnetization,KB is positive.
Therefore, none of the eigenvalues from the ‘‘band’’ cro
zero and this case can be ignored.

Case~ii ! «l,21. This inequality may be rewritten as

2,
KB

J
12[«11,l. ~7b!

Thus, similar to case~i!, the eigenvalue will not cross zer
and this case also can be discarded.

Case~iii ! «l.11. This inequality may be rewritten as

l,«21[
KB

J
. ~7c!

Therefore, case~iii ! is the only one that gives a negativ
eigenvaluel. In this case the determinantdN has the follow-
ing form:7

dN5
sinhw~N11!

2N sinhw
, coshw5«l , 0,w. ~8!

Substitution of Eq.~8! into Eq.~6! gives rise to the following
equation for the minimal eigenvalue:

2k5
sinhw~N11!

sinhwN
. ~9!
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Because we consider here the semi-infinite crystal, Eq.~9! is
simplified as

lim
N→`

sinhw~N11!

sinhwN
5exp~w!52k. ~10!

Sincew.0, Eq.~10! has a solution only fork,21. In terms
of the model parameters, this inequality means thatKS
,KB . This requirement is satisfied becauseKS,0 andKB
.0. Equation~10! allows one to obtain the expression fo
the eigenvaluel in a closed form

l5«1
1

2 S k1
1

k D . ~11!

Finally, the inequalityl,0 may be written in terms of the
model parameters. We find that the most convenient wa
do this is to use the reduced-anisotropy constantskS
[2KS /J andkB[2KB /J. In terms ofkS andkB , the crite-
rion for SMC can be written exactly in closed form as

kS11,
1

kB2~kS21!
. ~12!

For 21,kS,0, the inequality of Eq.~12! is satisfied for
kB smaller than some threshold magnitude determined by
formula

kB,kS211
1

kS11
. ~13!

For kS,21 the inequality of Eq.~12! is satisfied for any
positive magnitude ofkB . This shows that the surface i
always canted whenkS,21, independent of the bulk
anisotropy constant. This reflects the fact that SMC is driv
by the relative strength ofKS and the interlayer exchange,J.
The region corresponding to SMC in a semi-infinite ferr
magnet exhibiting in-plane bulk anisotropy and perpendi
lar surface anisotropy is shown in the left upper corner of
(kS ,kB) phase diagram presented in Fig. 2.

II. PHASE DIAGRAM FOR SURFACE MAGNETIC
CANTING IN A SEMI-INFINITE FERROMAGNET:

IN-PLANE SURFACE ANISOTROPY
AND PERPENDICULAR BULK ANISOTROPY

The generalization of this result for the case of surfa
anisotropy favoring in-plane magnetization and bulk anis
ropy KB that favors magnetization perpendicular to the s
face (kS,0,kB,0) is straightforward. In this case one mu
revise the definition of SMC slightly because it correspon
to a magnetic structure with the layer vector moments de
ated from the normal to the surface rather than from
in-plane direction. In accordance with this new definition
SMC it is more convenient to measure angles from the n
mal vector perpendicular to the surface. Thus we introd
anglesan5p/22un and expand the energy in Eq.~1! to
second order of everyan . Then the expression for the re
duced eigenvaluel in Eq. ~11! is valid. The difference is tha
now the reduced surface perturbationk is determined by
1-3
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k5211
2~KS2KB!

J
.

As a consequence, in terms ofkS andkB the criterion for the
appearance of SMC in the surface region of the bulk fer
magnetic has the form

1

kB2~kS11!
,kS21. ~14!

The analysis of this inequality forkB,0 andkS.0 shows
the following. For 0,kS,1, the inequality of Eq.~14! is
satisfied whenkB is negative and larger than some thresh
magnitude determined by formula

kS111
1

kS21
,kB . ~15!

For kS.1, the inequality of Eq.~13! is satisfied for arbi-
trarily large negativekB . The region corresponding to SMC
in a semi-infinite ferromagnet with perpendicular bulk a
isotropy and in-plane surface anisotropy is shown in the b
tom right corner of the (kS ,kB) phase diagram presented
Fig. 2. The caseskS ,kB.0 andkS ,kB,0 do not give rise to
any kind of SMC.

Below we present the physical treatment of the phase
gram obtained. An important common feature of the t
parts of the phase diagram that exhibit SMC is the existe
of regions that always have SMC independent of the b
anisotropy determined by the inequalityukSu.1. The exis-
tence of this region bordered in the left upper part of
phase diagram by the asymptotekS521 may be best under
stood within the limiting case ofkB→`. In this case, each

FIG. 2. Phase diagram for surface magnetic canting in the se
infinite ferromagnet in coordinates of reduced-anisotropy const
(kS ,kB). The schematic representation of the model used for
description of SMC/in-plane border and SMC/perpendicular bor
is presented in two insets. The region corresponding to SMC
semi-infinite ferromagnet exhibiting in-plane, bulk anisotropy, a
perpendicular surface anisotropy is shown in the left upper co
of the phase diagram. The SMC/in-plane border is described by
Eq. ~13!. The region corresponding to SMC in a semi-infinite fe
romagnet with perpendicular bulk anisotropy and in-plane surf
anisotropy is shown in the bottom right corner of the (kS ,kB) phase
diagram. The SMC/perpendicular border is described by Eq.~15!.
18440
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bulk vector moment (n52,3, . . . ) is oriented in-plane.
Therefore, the problem is reduced to a one-layer appro
and may be easily investigated analytically. Equation~1!
then has the form

E152J cosu11KS sin2 u1 .

Minimization of E1 with respect to angleu1 gives the
solutions

sinu150⇒u150

and

cosu1C52
J

2KS
⇒u1C5arccosS 2

J

2KS
D

The difference between the energies corresponding to th
solutions is determined by the formula

DE15E1~u15u1C!2E1~u150!5
~J12KS!2

4KS
.

Since we present here the physical treatment of the cas
perpendicular surface anisotropy considered in Sec. I,
anisotropy constantKS is negative. Therefore, the energ
differenceDE1 is also negative and the state with SMC
always favorable. However, the deviation of the surface m
ment is determined by the formula cosu152J/2KS[
21/kS . Therefore, SMC may be realized only for those ma
nitudes of kS that correspond to cosu1,1, i.e., kS,21.
Also, in this particular case, the susceptibilityx' with re-
spect to perpendicular magnetic field may be calculated,
is given by

x'~kS.21!5
1

2~kS11!
,

x'~kS,21!5
1

2~kS11!kS~12kS!
. ~16!

It follows from these two formulas that in the vicinity of th
border between the canted and in-plane states of the sur
both x'(kS,21) and x'(kS.21) diverge. In addition
x'(kS.21)52x'(kS,21), demonstrating that the trans
tion from in-plane surface magnetization to canted is of s
ond order. This applies to all of the borders in the pha
diagram in Fig. 2. These results and the existence of reg
where the surface is always canted might be best unders
in this limiting case because, forkB→`, the orientation of
the surface vector moment is affected only by the excha
interaction between the first and second layers and the
face anisotropyKS . The rotation of the surface vector mo
ment to 90° from an in-plane to out-of-plane orientati
gives rise to an increase in the energy of exchange inte
tion of the surface moment with the subsurface one. On
other hand, this rotation will give rise to an increase in t
surface-anisotropy energy. If the latter is larger than
exchange-interaction energy then the surface-vector mom
will deviate from an in-plane orientation. The physical trea
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ment of the region in the right bottom corner of the pha
diagram where the surface is always canted is similar.

III. EFFECT OF EXTERNAL MAGNETIC FIELD ON THE
PHASE DIAGRAM

After establishing that equations of all lines in the ma
netic surface diagram can be obtained in closed form, E
~12!–~15!, we now turn to the case with nonzero appli
magnetic field,hÞ0. In the case wherekS,0,kB.0, ac-
counting for an in-plane external magnetic fieldhi gives rise
to an additional term in the energyE,

E52J(
n51

N

cos~un2un11!1KS sin2 u1

1KB(
n52

N

sin2 un2 (
n51

N

hi cosun . ~17!

In this case, the procedure for finding the minimal eige
value is the same. This is due to the fact that matrixA has the
same form because the surface perturbationk is the same.
Similarly, Eq. ~11! for l is also valid. However, the param
eter « changes to«511kS/21hi/2. As a consequence, th
criterion for uniform magnetic structure to be unstable ha
different form,

kS111hi,
1

kB2~kS21!
. ~18!

Analysis of this formula shows that includinghi leads to an
increase of the in-plane region in the (kS ,kB) phase diagram
The details of the movement of the SMC-in-plane border
as follows. First, the asymptote atkS521 moves to the left
because it is determined by the formulakS5212hi . Sec-
ond, accounting for an in-plane magnetic field leads to
existence of a finite interval inkS where SMC is forbidden
for kB50. Therefore, in this case, the SMC is suppressed
appears only ifkS exceeds some critical magnitude dete
mined by the formula

kS,kSCi52
hi1Ahi

214hi

2
. ~19a!

The border between SMC and in-plane regions forhÞ0 is
shown in the phase diagram of Fig. 3. Accounting for
external magnetic fieldh' perpendicular to the surface plan
for kS.0,kB,0 leads to similar consequences in the bott
right part of the phase diagram, as shown. The expression
kSC' is determined by the formula

kS.kSC'51
h'1Ah'

2 14h'

2
. ~19b!

IV. THIN-FILM MAGNETISM

In the case of a finite number of layers,N, in a thin film
one first must take into account the surface perturbatio
the other surface of a film in Eq.~5! and, second, solve th
resulting equation without the assumptionN→`. The solu-
18440
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tion of Eq. ~5! for a finite number of atomic layers is o
special interest in thin-film magnetism. However, the nec
sity to account for a surface perturbation on each side of
film brings additional complications. For the sake of simpl
ity, we consider two extreme cases:~A! a thin film supported
on a magnetic substrate that has an extremely small dep
SMC and ~B! a thin film supported on nonmagnetic su
strate.

Case~A!. In this limiting case, Eq.~9! is valid because the
surface perturbation on the other plane of the film is alrea
taken into account, i.e.,un50 for n.N ~see Fig. 1!. Then,
the right side of Eq.~9! may be written as

2k5
sinhw~N11!

sinhwN

5exp~w!1@exp~w!2exp~2w!#
exp~22wN!

12exp~22wN!

'exp~w!1@exp~w!2exp~2w!#exp~22wN!. ~20!

One can see from this formula that the correction to o
previous result, Eq.~10!, obtained for a semi-infinite crysta
in the limit N→` decreases exponentially with the thickne
of the film. What is more important is that this correction
positive in the interval 0,w,1`. The latter gives rise to
the following consequence: Eq.~19! is satisfied with a
smaller magnitude ofw for any given value of the paramete
2k. Bearing in mind the relationl5«2cosh(w) @see defi-
nitions of parameters«, «l , andw in Eqs.~5! and ~8!#, one
may conclude that accounting for a finite number of lay
gives rise to a decrease in the parameterw, and this, in turn,
leads to an increase in the minimal eigenvaluel. As a con-
sequence,l crosses zero later because in order to satisfy
requirementl50, one needs a larger surface anisotro
compared to that of a semi-infinite crystal. Therefore,

FIG. 3. The evolution of SMC/in-plane border, Eq.~19a!, in the
(kS ,kB) phase diagram with an in-plane magnetic fieldhi is shown
in the left upper corner of the phase diagram. The evolution
SMC/perpendicular border, Eq.~19b!, with perpendicular magnetic
field h' is shown in the bottom right corner of the phase diagra
The parameterskSCi and kSC' confine the intervals inkS where
SMC is forbidden forkB50.
1-5
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A. P. POPOV AND D. P. PAPPAS PHYSICAL REVIEW B64 184401
appearance of SMC in a thin film supported on the h
magnetic substrate is suppressed. This situation is illustr
in Fig. 4.

Below we evaluate this solution for a few different film
thicknessesN.

N51. In this case, the problem is restricted to the o
layer approach that was considered in Sec II. Now, SM
must be treated as a deviation of the monolayer vector
ment from the in-plane orientation. SMC takes place forkS
,21 and thus the region of SMC coincides with the regi
where the surface is always canted in the phase diagram
Fig. 2. For 21,kS,0, the monolayer vector moment
always parallel to the surface.

N52. In this case, the region of SMC is larger than th
of N51. If kS,21, then, similarly toN51, SMC takes
place wheneverkB.0, while for kS.21 SMC occurs only
whenkB satisfies the inequality

kB,
22kS21

kS11
. ~21!

The right side of Eq.~21! is negative for2 1
2 ,kS,0, and

thus we may conclude that the range ofkS where SMC is
suppressed becomes half as large as in theN51 case.

N53. Similar to the casesN51 andN52, for kS,21
the SMC occurs wheneverkB.0. ForkS.21 the SMC oc-
curs only whenkB satisfies the inequality

FIG. 4. ~a! Graphical solution of Eq.~10! for the parameterw
corresponding to minimal eigenvalue of the matrixA in Eq. ~5! for
semi-infinite ferromagnet~solid line! and Eq.~20! for N-layer film
supported on a hard magnetic substrate~dashed line!. ~b! Graphical
illustration of the case when the criterion for SMC in a semi-infin
ferromagnet is fulfilled (l`,0), but inN-layer film with the same
magnitudes of model parameterkS , kB not fulfilled (0,lN). The
suppression of SMC in thin magnetic films is essentially a thin-fi
effect because the additional effective in-plane anisotropy in
N-layer film exists exclusively due to the finite thickness of th
film only. This effect cannot be assigned to either the surfa
anisotropy constant or the bulk one and thus needs to be accou
for directly in the treatment of SRT in thin films supported on a ha
magnetic substrate.
18440
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kB.
24kS231A4kS

218kS15

2~kS11!
. ~22!

It follows from Eq. ~22! that the evolution of the border i
the same, i.e., the SMC region continues its extension
now the SMC/in-plane border crosses thekB50 axis atkS
52 1

3 .
A common feature of all the lines that determine t

SMC/in-plane border in the phase diagram for thin films w
N51, 2, 3, . . . supported on a hard magnetic substrate
that each of these lines has an asymptote atkS521. This
line moves to the right side of the diagram asN increases and
crosses the axiskB50 at kS521/N ~Fig. 5!. In the limiting
caseN@1, the SMC/in-plane border coincides with that o
tained within the assumptionN→` @Eq. ~13!#. This result
may be treated as a qualitative description of a SRT in a
film as the thickness increases. Indeed, while anN-layer film,
with surface-anisotropy constantkS satisfying the inequality
1/N,kS,1/(N11) and smallkB , exhibits an in-plane ori-
entation, the (N11) layer film with the samekS and kB
exhibits SMC. Therefore, we find a SRT from an in-plane
SMC with increasing thickness of the film deposited on
magnetic substrate with an extremely small depth of SM

These trends may be understood in the following w
The existence of an asymptote atkS521 in each curve for
N51, 2, 3, . . . shows that the surface vector moment
always canted when the surface anisotropy exceeds the
change interaction with the subsurface layer. In this case,
canted state always exists. The increase in the range okS
where canting is suppressed for ultrathin films is a con
quence of reduced thickness of a film, which is insufficient
support a SMC state that is suppressed in the hard mag
substrate, i.e., in the layers with layer indexn5N11, N
12, . . . .

n

-
ted

FIG. 5. Evolution of SMC/in-plane and SMC/perpendicular bo
ders in the (kS ,kB) phase diagram with the increase in thickness
a thin film supported on a hard magnetic substrata. PointA in the
left upper corner of the phase diagram is located in an in-pl
region for anN-layer film. However the pointA with the same
coordinates (kS , kB) is located in the SMC region for an
(N11)-layer film. This illustrates the SRT from an in-plane un
form magnetic structure of theN-layer film to SMC in the (N
11)-layer film with the increase in thickness.
1-6
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Case~B!. To consider the case corresponding to a t
magnetic film supported on a nonmagnetic substrate,
must take into account the surface perturbationk at the other
surface of a film, i.e., one must substitute«l1k instead of
«l in the bottom right corner of matrixA in Eq. ~5!. The
equation for the eigenvalues can then be written in the fo

dN1kdN211
k2

4
dN2250. ~23!

The substitution of the expression fordN determined by the
Eq. ~8!, into Eq. ~23! gives rise to the equation

112k
sinhwN

sinhw~N11!
1k2

sinhw~N21!

sinhw~N11!
50. ~24!

First, it follows from Eq. ~24! that in the limiting caseN
→` this equation is transformed exactly into Eq.~10! ob-
tained above for a semi-infinite crystal with surface pert
bation at only one surface of the crystal. Indeed, since in
limit N→` the fraction in the second and in the last terms
Eq. ~10! transforms into exp(2w) and exp(22w), respec-
tively, the Eq. ~24! may be rewritten as@11k exp(2w)#2

50. This is then equivalent to Eq.~10!. Therefore, we come
to the natural result that the magnetic structure in the sur
region of a semi-infinite crystal is not affected by the boun
ary condition at the other surface of this crystal. Second,
~24! is quadratic with respect to parameterk and thus may be
solved analytically. The expression for the rootk of Eq. ~24!
corresponding to minimal eigenvaluel is given by

2k5exp~w!1F2 sinhw

sinhw~N21!
$11exp@2w~N21!#%G

'exp~w!1@22 sinhw exp~2w$N21%!#. ~25!

The rectangular brackets contain the correction to our pr
ous result, Eq.~10!, obtained for semi-infinite crystal in th
limit N→`. As it follows from Eq.~25! this correction de-
creases exponentially with the thickness of the film. Mo
importantly, this correction is negative in the interval 0,w
,`. This gives rise to the following consequence: Equat
~25! is satisfied with a larger magnitude ofw for any given
value of the parameter2k. Therefore, one may conclude th
in contrast to the result obtained for thin films supported
a hard magnetic substrate, accounting for a finite numbe
layers in a thin film supported on a nonmagnetic subst
gives rise to an increase in the parameterw. As a conse-
quence, the minimal eigenvaluel is decreased andl crosses
zero earlier compared to a semi-infinite crystal. In oth
words, in order to satisfy the requirementl50, one needs a
smaller surface anisotropy compared to that of semi-infin
crystal. Therefore, SMC is enhanced in a thin film suppor
on a nonmagnetic substrate relative to a film on a hard m
netic substrate. This situation is illustrated in Fig. 6.

Below we evaluate this solution for a few different film
thicknessesN.

N51,2. In these cases, the bulk layers are absent and
the problem is ill defined because the concept of can
magnetic structure cannot be applied to these systems.
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orientation of the vector moment of these films is tota
determined only by the sign of surface anisotropy const
KS , i.e., it is parallel to the film plane whenKS.0 and it is
perpendicular to the film plane whenKS,0.

N53. If kS,21, SMC takes place wheneverkB.0,
while for kS.21 the SMC occurs only whenkB satisfies the
inequality

kB,
22kS

kS11
. ~26!

The right side of Eq.~26! is bigger than that of Eq.~13! and
thus in this case, the region of SMC is larger that of a se
infinite crystal. Similar to the case of the semi-infinite cry
tal, the SMC/in-plane border goes through the originkS
50,kB50.

N54. Similar to the caseN53, for kS,21 SMC occurs
wheneverkB.0. For kS.21 SMC takes place only ifkB
satisfies the inequality

kB,2
kS

kS11
. ~27!

The right side of Eq.~27! is smaller than that of Eq.~26!
obtained forN53, but larger than that of Eq.~13!, which
determines the SMC/in-plane border for a semi-infinite cr

FIG. 6. ~a! Graphical solution of Eq.~10! for the parameterw
corresponding to minimal eigenvalue of the matrixA in Eq. ~5! for
a semi-infinite ferromagnet~solid line! and Eq.~25! for an N-layer
film supported on a nonmagnetic substrate~dashed line!. ~b!
Graphical illustration of the case when the criterion for SMC in
semi-infinite ferromagnet is not fulfilled (0,l`), but in anN-layer
film with the same magnitudes of model parameterkS ,kB fulfilled
(lN,0). The enhancement of SMC region in the phase (kS ,kB)
diagram for thin magnetic films supported on a nonmagnetic s
strate compared to semi-infinite crystal is essentially a thin-fi
effect. The additional effective perpendicular anisotropy in su
film exists exclusively because of the lack of inner layers exhibit
an in-plane anisotropy due to finite thickness of thin film. Th
effect cannot be assigned either to the surface-anisotropy con
or to the bulk one and thus needs to be accounted for directly in
treatment of SRT in thin films supported on a nonmagnetic s
strate.
1-7



a
e

th
re

he
up
e

i-

th
s
k-

b
n
lm

ay
ag

r

ex-
r. In
MC
ate
to
n

ck-
nner
ote

n-
he
ne-

We

t
ddi-

ent
rder

of
ll

g-
m
of

of a
ce
se it

ch
cts
lic-

of a
in
ce
o-

f

in

r-
o

f
s

A. P. POPOV AND D. P. PAPPAS PHYSICAL REVIEW B64 184401
tal. Therefore, in this case the SMC region is smaller th
that of the caseN53 but bigger than that of the semi-infinit
crystal. The SMC/in-plane border has akB intercept at the
origin.

N55. Similar to the casesN53 andN54, for kS,21
SMC occurs wheneverkB.0. For kS.21 the evolution of
the border is the same, i.e., the SMC region shrinks and
SMC/in-plane border goes through the origin. The SMC
gion is determined by the inequality

kB,
2322kS1A8kS

2116kS19

2~kS11!
. ~28!

A common feature of all the lines that determine t
SMC/in-plane border in the phase diagram for thin films s
ported on the nonmagnetic substrate is that each of th
lines has an asymptote atkS521 and goes through the or
gin kS50,kB50 ~Fig. 7!. This line moves to the left in the
(kS ,kB) diagram asN increases. In the limiting caseN→`
the SMC/in-plane border coincides with that obtained for
semi-infinite crystal. This result also may be treated a
qualitative description of a SRT in a thin film as the thic
ness increases. Indeed, while anN-layer film exhibits SMC,
the (N11)-layer film with the samekS and kB exhibits an
in-plane orientation. Therefore, contrary to the result o
tained in case~A! we find an inverse SRT from SMC to a
in-plane orientation with increasing thickness of a thin fi
supported on nonmagnetic substrate.

These results may be understood in the following w
Similar to the case of a thin film supported on a hard m
netic substrate, the existence of the asymptote atkS521 in
each curve forN53,4,5, . . . shows that the surface vecto

FIG. 7. Evolution of SMC/in-plane and SMC/perpendicular bo
ders in the (kS ,kB) phase diagram with the increase in thickness
a thin film supported on a nonmagnetic substrate. PointA in the left
upper corner of the phase diagram is located in the SMC region
an N-layer film. However, the pointA with the same coordinate
(kS ,kB) is located in an in-plane region for an (N11)-layer film.
This illustrates the SRT from SMC in theN-layer film to an in-plane
uniform magnetic structure of the (N11)-layer film with the in-
crease in thickness.
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moment is always canted when the surface anisotropy
ceeds the exchange interaction with the subsurface laye
this case SMC always exists. The enhancement of the S
region for the thin film supported on a nonmagnetic substr
compared to that of a semi-infinite crystal takes place due
the lack of bulk layers that exhibit an in-plane anisotropy. O
the contrary, the decrease in the SMC region with the thi
ness takes place due to the increase in the number of i
layers that exhibit an in-plane anisotropy and thus prom
the in-plane orientation.

The generalization of this result for the case of bulk a
isotropy KB that favors magnetization perpendicular to t
surface and the surface anisotropy favoring in-plane mag
tization (kS,0, kB,0) is straightforward.

Computer simulations were run to verify these results.
chose a number of atomic layers,N, whose vector moments
were allowed to deviate from the surface plane forkS
,0,kB,0 ~from normal to the surface forkS.0,kB,0! and
minimized the expression for the energy in Eq.~1!. This
procedure allowed us to obtain numerical data for sin(un)
(n51,2,3, . . . ,N). The number of atomic layersN was then
varied until sin(uN),1023. These simulations confirmed tha
the analytical results presented above are accurate. In a
tion, it was confirmed that all borders that separate differ
regions in the phase diagram correspond to second-o
phase transitions. This result verifies that the expansion
the energy in Eq.~1! is appropriate with respect to sma
variations inun according to Eq.~2!.

V. CONTINUUM APPROACH

To date the problem of SMC of a semi-infinite ferroma
net has been considered only within a continuu
approach.2,3 This approach disregards the layered nature
the substance and reduces the problem to the solution
differential equation with a boundary condition at the surfa
plane. This approach has a significant advantage becau
allows one to get the dependence of the angleu on distance
from the surface analytically. Here we revisit this approa
and show that it is necessary to include higher-order effe
to match the exact, discrete solution. For the sake of simp
ity, we restrict ourselves to the consideration of the case
semi-infinite ferromagnet exhibiting in-plane anisotropy
the bulk (kB.0) and perpendicular anisotropy in the surfa
(kS,0). In brief, the procedure for finding the canting pr
file u(z) is the following.

Minimization of the energy in Eq.~1! with respect to each
angleun , for n52,3,4, . . . , gives rise to an infinite set o
similar equations,

]E

]un
52J sin~un212un!1J sin~un2un11!1Kb sin 2un50.

~29!

The equation obtained after the minimization of energy
Eq. ~1! with respect to the angleu1 differs from Eq.~29! and
is given by

f

or
1-8
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]E

]u1
5J sin~u12u2!1KS sin2 2u150. ~30!

The essential feature of the continuum approach is that
difference between the angles of adjacent layers is postul
to be small, and thus the following approximations are
sumed to be valid

un11'un1un81 1
2 un9 , sin~un112un!'un112un .

~31!

This reduces the problem of the description of SMC to
solution of a second-order differential equation

u9~z!2
1

2j2 sin 2u~z!50 ~32!

with the boundary condition at the surface plane

u8~0!2
kS

2
sin 2u~0!50. ~33!

Here we have shifted the enumeration of the atomic lay
andn51 corresponds toz50. The parameterj introduced in
Eq. ~32! is determined by the formula 1/kB5j2.

The solution of Eq.~32! has the form

tan
u~z!

2
5tan

u~0!

2
expS 2

z

j D , ~34!

and thusj is the effective depth of the canting profile.
The boundary condition Eq.~33! gives

cosu~0!52
J

2jKS
[2

AkB

kS
. ~35!

It follows from this formula that the SMC of a ferromag
net exhibiting in-plane anisotropy in the bulk takes place
the requirementu cosu(0)u,1 is satisfied. The solution of thi
inequality giveskB,kS

2. Similar consideration of the cas
kS.0, kB,0 gives rise to the inequality2kS

2,kB . Both
plotskB5kS

2 andkB52kS
2 are presented in Fig. 8 by dashe

lines. It follows that this approximation of the continuu
approach does not imply the existence of regions wh
SMC exists regardless of how large the in-plane bu
anisotropy constant is, which is a nonphysical result, as
scribed above. Indeed, in the phase diagram presented in
8, the SMC region obtained within the continuum approa
is restricted from above by the parabolakS5kB

2 for any mag-
nitude ofkS .

To simplify the comparison of these results with ours,
expand the right side of the inequality in Eq.~13! exhibiting
our criterion for SMC in the vicinity ofkS50. This expan-
sion gives rise to the formula

kB,kS
22kS

31kS
42kS

51¯ . ~36!

This result shows that the continuum approach (kB , kS
2)

accounts for only the first term in Eq.~36! and thus is not
accurate. As a consequence, it leads to an overestimatio
surface anisotropy. Indeed, as it follows from Eq.~36! and
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also from Fig. 6 within the approach used in the pres
article for given bulk anisotropykB.0, the SMC appears fo
smaller surface anisotropy compared to what the continu
approach gives. The relative error is given by

1
2 ~AkB141AkB!21. ~37!

The magnitude ofkB is small for metals such as Fe, Co, N
It may be estimated from the domain-wall thicknessj be-
causekB51/j2. According to Ref. 8,j ~in terms of lattice
parameters! is 138, 36, and 285 for Fe, Co, and Ni, respe
tively. For Fe, this formula gives a difference of 1.4%
Therefore, the error determined by Eq.~36! is small for these
natural magnets. On the other hand, artificially created m
tilayers demonstrate substantial variations in vector-mom
orientation across the films on the atomic scale, and thus
may expect more substantial variations in the coordinate
the point (kS ,kB) in the phase diagram. We shall demo
strate this in the next section.

The discrepancies between our results and those obta
with the continuum approach originate from an inconsisten
in the form of the continuum approach used in Refs. 2 and
The problem is that while the differential equation of E
~30! was obtained including the second derivative in E
~31!, the boundary condition of Eq.~33! implies that the
second derivative is ignored. We believe that this is not
propriate in the vicinity of the surface, where the differen
between angles is larger than in the bulk. As a conseque
one must take the second-derivative term into account w
treating the boundary condition at the surface plane.

Accounting for the second derivative, Eq.~31!, in the ex-
pansion of Eq.~30! gives rise to another boundary conditio
at the surface plane,

1

2
u9~0!1u8~0!2

kS

2
sin 2u~0!50. ~38!

FIG. 8. Magnetic phase diagram obtained here~solid line!, Eqs.
~13! and ~15!. Magnetic phase diagram corresponding to the c
tinuum approach of Ref. 2~dashed line!, Eq. ~35!. The improved
continuum-approach magnetic phase diagram obtained by inclu
the second derivatives in the boundary condition according to
~33! ~dashed-dotted line!, Eq. ~41!.
1-9
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The intermediate solution of the differential equation~32!
may be written in the form

u8~z!52
sinu~z!

j
. ~39!

Also, as it follows from Eq.~32!,

u9~z!5
1

2j2 sin 2u~z!. ~40!

Equations~39! and ~40! being substituted in Eq.~38! give
rise to the result

cosu~0!5
2AkB

kB22kS
. ~41!

The analysis of this formula shows that accounting for
second derivative in the boundary condition Eq.~38! leads to
the existence of a region in the (kS ,kB) phase diagram wher
the surface is canted regardless of the magnitude ofkB . The
SMC/in-plane border is presented in Fig. 8 by a dash
dotted line. As one can see from this picture, the result
tained is still not perfect because, according to Eq.~41!, the
region where the surface is always canted takes place
kS,2 1

2 rather thankS,21. Also, the increase inkB for
2 1

2 ,kS,0 leads to a SRT from SMC to an in-plane stru
ture and then to another SRT from the in-plane structure
SMC. This again gives a nonphysical result. On the ot
hand, Eq.~41! is more accurate than Eq.~35! for small mag-
nitudes ofkB andkS .

To summarize the results of this comparison, we concl
that the discrete method used here for constructing the p
diagrams for SMC in semi-infinite magnets is more cons
tent than the continuum approach. In contrast to the c
tinuum approach, this method allows one to consider th
film magnetism and to describe the SRT from in-plane
SMC in ultrathin films supported on hard magnetic su
strates and the inverse SRT in ultrathin films supported
non magnetic substrates~see Sec. IV!. We have to mention
that our computer simulations with artificially restricte
numbers of atomic layers~N51, 2, 3, 4! that are allowed to
deviate their vector moment from an in-plane orientat
demonstrate that the canting profile through the thicknes
these ultrathin films is substantially nonuniform. Since t
continuum approach cannot be applied to the treatmen
thin-film magnetism, it is better to obtain canting profiles
direct minimization of the energy with the help of a com
puter rather than using the continuum approach as was d
in Ref. 2.

VI. THE TREATMENT OF SRT OBSERVED
IN 1.5 ATOMIC LAYERS Fe ÕGd WITHIN

THE DISCRETE APPROACH

Recently we reported on the two-step SRT in 1.5 atom
layers ~AL ! of Fe on Gd with temperature discovered wi
spin polarized secondary electron-emission spectroscopy9 It
was shown that the first step in the SRT observed i
second-order phase transition from an in-plane orientatio
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the Fe vector moment to the canting state. The next step i
irreversible first-order phase transition to another cant
state with a larger deviation of the Fe vector moment fro
the in-plane orientation. Later experimental investigations
this system were performed using the magneto-optic K
effect ~MOKE!.10 Because of its greater penetration dep
the MOKE shows both the Fe and Gd film response, as
posed to the spin polarized electrons, which are sensi
only to the top surface layer. Results obtained by mean
MOKE show unequivocally that the Gd atomic layers in t
surface region take part in the SRT, and thus this system
realization of SMC structure.

As it follows from these experiments, the ground state
low temperature is an in-plane magnetic structure. The
crease in temperature gives rise to a SRT from an in-plan
SMC structure. Therefore, we must chooseKS,0 and KB
.0 and treat the SRT observed within the left upper part
the phase diagram in Fig. 2. This is done within the follo
ing assumptions.

~1! Since the SRT takes place within a narrow temperat
interval close to the Gd Curie temperature, 270–290 K, o
must assume that the Gd magnetizationMGd and also its
easy-plane anisotropy energy strongly depend on temp
ture and decrease to zero in the vicinity of the Gd Cu
point.

~2! Since the Curie point of the Fe film~400 K! is far
above the Gd Curie point~292 K!, the Fe magnetizationMFe
and its easy-axis anisotropy energy is assumed to be
perature independent in the narrow temperature inte
270–290 K. The energy of the Fe-Gd exchange interactio
taken to go to zero in the vicinity of the Gd Curie poi
because it is proportional to the productMFeMGd. Here we
do not take polarization effects into account.

~3! Since 1.5-AL Fe/Gd is a nonuniform system, we mu
generalize the results obtained in the previous sections. F
the Fe-Gd exchange interactionJFe-Gdis assumed to be large
than Gd-Gd exchange interactionJGd-Gd. And second, in the
vicinity of the Gd Curie point, the Fe layer magnetizatio
MFe is assumed to be both much bigger than the Gd la
magnetizationMGd and also independent of temperature.
a consequence, the scalar surface perturbationk in Eq. ~5!
transforms into a matrix. The procedure for evaluating
criterion for the nonstability of the uniform in-plane structu
is similar to that presented in Sec. I.

Within these three assumptions, the criterion for SMC
given by

kB,2
kS11

~g21!kS21
222

~g21!kS21

kS11
, ~42!

where

g5
JFe-GdMFe

JGd-GdMGd
, kS5

2KSMFe

JFe-GdMGd
, kB5

2KB

JGd-Gd
. ~43!

First, it follows from Eq.~42! that if g is set to 1, then it
coincides with Eq.~13!, which was obtained with the as
sumption that the film is uniform. Second, since the incre
in temperature leads to the decrease ofMGd to zero, accord-
ing to Eq.~43!, the magnitudes of the parametersg.0 and
1-10
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kS,0 will approach positive and negative infinity, respe
tively. The analysis of Eq.~42! shows that forg.2 andkS
,0 the right side of Eq.~42! increases with temperature du
to the increase of the parameterg. As a consequence, th
SMC/in-plane border moves to the right in the (kS ,kB) phase
diagram. Also, the point in the in-plane region of the (kS ,kB)
phase diagram corresponding to 1.5-AL Fe/Gd at low te
perature moves to the left with temperature due to the
crease in the absolute value ofkS,0. Therefore, this point

FIG. 9. The part of magnetic phase diagram generalized for
case of nonuniform films according to Eq.~34!. The increase in
temperature leads to the movement of the SMC/in-plane borde
the right side of the diagram shown by an arrow oriented to
right. The SMC/in-plane border is presented for two temperatu
T1 and T2.T1 . The point corresponding to 1.5-AL Fe/Gd mov
with temperature to the left~shown by a single arrow oriented to th
left!. The meeting of this point and the SMC/in-plane border sig
fies second-order SRT observed experimentally in Refs. 9 and
18440
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and the SMC/in-plane border move towards each other w
temperature. The point corresponding to the 1.5-AL Fe/
will necessarily cross the in-plane/SMC border with te
perature and the system will undergo a SRT to the can
state via a second-order phase transition, as observed ex
mentally. The phase diagram generalized for the case of
nonuniform system according to Eq.~42! is presented in
Fig. 9.

Thus we demonstrate, as it was mentioned in Sec. V,
multilayer systems exhibit a more substantial variation in
reduced anisotropy coordinateskS , kB than uniform magnets
such as Fe, Co, and Ni. In particular, the reduced surf
anisotropykS can exist in the region wherekS,21, and
SMC exists regardless of how large the bulk reduced ani
ropy kB is.

The description of the first step of the SRT in 1.5-A
Fe/Gd presented above may be considered only as a first
in the full description of this complicated two-step SRT. T
problem is that this treatment ignores the fact that the S
observed experimentally is effectively a two-step transit
consisting of a second-order phase transition and a su
quent first-order transition. In order to describe a first-ord
SRT, one must consider higher-order anisotropy consta
All this is beyond of the scope of the present article.
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